
The nuts and bolts of systems

Joseph Kasser

Temasek Defence Systems Institute, National University of Singapore

Block E1, #05-05, 1 Engineering Drive 2, Singapore 117576

Email tdskj@nus.edu.sg

Abstract-This paper fills a gap in the systems engineering and

project management education literature by providing examples

of:
1. The effect of desired and undesired emergent properties.

2. How the System Lifecycle (SLC) relates to the iterative
problem-solving process.

3. The relationship between the “what‟s” and the “how‟s” of
systems engineering.

4. How subsystem boundaries can change during system de-
sign when compensating for undesired emergent properties.

5. How the solution to one problem often creates a subsequent
problem.

6. The effect of unanticipated problems on the schedule, usu-
ally in the form of the need to insert unplanned work into
the schedule resulting in a delay to the project.

Keywords-emergent property; problem-solving; schedule; delay;

boundaries; systems engineering; systems engineering education.

 INTRODUCTION I.

This paper fills a gap in the education literature. Percep-
tions of systems engineering from different perspectives
showed that the systems engineering literature often discusses
the same concepts using different terminology and viewpoints
and uses the same terminology for different concepts [1].This
situation is similar to Humpty Dumpty telling Alice that,
“when he uses a word it means just what he chooses it to mean
- neither more nor less” [2] irrespective of how other people
use the same word. Accordingly, after drawing the reader‟s
attention to the situation, this paper begins by establishing a
baseline for the meaning of specific terminology in Section II
which defines the meanings of the words „system‟, „emergent
properties‟, „the System Lifecycle (SLC)‟ and „milestone re-
views‟ as used in this paper. Section III then relates the
„what‟s‟ and the „how‟s‟ of systems engineering to the prob-
lem-solving process and the SLC. Section IV uses the hypo-
thetical Widget system as an example to discuss:

1. Desired and undesired emergent properties.

2. How the solution to one problem gives rise to subse-
quent problems during the SLC and may require
changing the boundaries of the subsystems after the
initial architecture is approved.

Section V contains comments on the Widget case and Sec-
tion VI summarises some of the lessons learned from the case.

 DEFINITIONS II.

Perceptions of systems engineering from different perspec-
tives showed that the systems engineering literature often dis-
cusses the same concepts using different terminology and
viewpoints and uses the same terminology for different con-

cepts [1]. To clarify the issues discussed in this paper, this
section defines the following terms used in this paper:

1. A system

2. Emergent properties

3. The system lifecycle

4. Milestone reviews

A. Definition of a system

The example system discussed in this paper is based on the
minimal definition of a system as, “A set of different elements
so connected or related as to perform a unique function not
performed by the elements alone” [3]. Accordingly, the char-
acteristics of the system include:

1. At least two elements (subsystems).

2. Interactions between the elements.

3. Emergent properties that arise from the interactions
between the elements.

B. Emergent properties

There seem to be three types of emergent properties [4]:

1. Desired.

2. Undesired.

3. Serendipitous.

The three types of emergent properties are split between
known emergent properties at design time and unknown
emergent properties at design time, as follows:

 Known emergent properties at design time: are:

 Desired: being the purpose of the system.

 Undesired: based on experience and are supposed
to be:

 Designed out.

 Compensated for if they cannot be designed

out.

 Unknown emergent properties at design time: are:

 Undesired: functionality performed by the system
that is undesired.

 Serendipitous: beneficial and desired once discov-
ered, but not part of the original specifications.

C. The System Lifecycle

The System Lifecycle (SLC) has been defined in many
ways. This paper uses the grouping into nine different states of
the SLC [5] defined in generic terms as:

A. The Needs Identification State.

mailto:tdskj@nus.edu.sg

1 2 3 4 5 6 7

Needs

Requirements

Design

Realization

Integration

Test

O&M

Fig. 2 Widget project: original schedule

Fig. 1 The waterfall view of most of the SLC

B. The System Requirements State.

C. The System Design State which is split into:

 The Preliminary System Design sub-state.

 The Detailed System Design sub-state.

D. The Subsystem Construction State.

E. The Subsystem Test State.

F. The System Integration and System Test States.

G. The Operations, Maintenance (O&M) and Upgrade

States.

H. The Disposal State.

The output of each state in the SLC becomes the input to
the subsequent state and is often shown in the waterfall [6]
view of Fig. 1. Each state in the SLC has two exit conditions:

1. The normal planned exit at the end of state milestone
review which documents consensus that the system is
ready to transition to the subsequent state.

2. An anticipated abnormal exit anywhere in the state
that can happen at any time in any state and necessi-
tates a return to an earlier state in the SLC due to:

a) Any flaw other than replacing a defective item.

b) An approved change that necessities rework.

The second type of exit is recognized and is often depicted
in a chaotic view of the SLC which shows every state con-
nected to every other state.

D. Milestone reviews

Each state in the SLC commences and terminates at a ma-
jor formal milestone. Different projects use different names
for the formal and informal milestones, but a milestone by any
name is still a milestone. Typical formal milestones are [1]:

 Start of project: formally starts the project and
commencement of the Needs Identification State.

 Operations Concept Review (OCR): marks the
termination of the Needs Identification State and
commencement of the System Requirements State.

 Systems Requirements Review (SRR): marks the
termination of the System Requirements State and
commencement of the Preliminary Design sub-state of
the System Design State.

 Preliminary Design Review (PDR): marks the
termination of the Preliminary Design sub-state of the
System Design State and commencement of the
Detailed Design sub-state of the System Design State.

 Critical Design Review (CDR): marks the termination
of the System Design State and commencement of the
Subsystem Construction State.

 Test Readiness Review (TRR): marks the termination
of the Subsystem Construction State and
commencement of the Subsystem-Testing State.

 Integration Readiness Review (IRR): marks the
termination of the Subsystem-Testing State and
commencement of the System Integration State.

 Delivery Readiness Review (DRR): marks the
termination of the System Integration and System Test
States and commencement of the activities that deliver
the system and lead to terminating the successful
project.

 End of project: marks the formal termination of the
project.

 THE “WHAT‟S” AND THE “HOW‟S” III.

Perceived from the problem-solving and enabler systems
engineering camps [1], each state in the SLC may be consid-
ered as starting with a problem and ending with a solution.
Accordingly the solution output of any state becomes the
problem input to the subsequent state. For example:

1. The matched set of specifications for the system and
subsystems produced during the System Require-
ments State is both:

 A solution to the problem of specifying a system
that will meet the needs.

 A problem to the designers/systems architects
1
 be-

cause they now have to design a system that is
compliant to the specifications.

2. The design or architecture produced at the end of the
System Design State is both:

 A solution to the problem of designing the system.

 A problem for the Subsystem Construction State.
This situation, shown in Fig. 3, is often referred to
as the:

1 In the System Design State.

Fig. 3 The waterfall view – problem-solving perspective (partial) [1]

Fig. 4 Structural perspective; the three subsystems

Syste
m

Nut &
Bolt

Nut Bolt

Part A

Sub A-
1

Sub A-
2

Part B

 “What’s”: which refer to what needs to be

done, or the problem.

 “How’s”: which refer to how it is done, or the

solution.

 THE WIDGET SYSTEM IV.

This section uses the Widget system as an example to dis-
cuss:

1. Desired and undesired emergent properties.

2. How the solution to one problem gives rise to a sub-
sequent problem during the SLC and may require
changing the boundaries of the subsystems after the
initial architecture is approved.

Federated Aerospace is developing the Widget system ac-
cording to the „A‟ paradigm of systems engineering in which
the SLC starts in the Needs Identification State [7]. The pro-
ject is the first of its kind: there are no similar systems in ex-
istence. The Widget system comprises two subsystems, Part A
and Part B. This paper abstracts out all aspects of the Widget
system except for the approach to mechanically fastening the
two subsystems to each other

2
.

The original seven-month Widget project schedule shown
in Fig. 2 was planned as a single pass through the waterfall
assuming there would be no serious problems during the sys-
tem development. Consider the Widget system as it passes
through the sequential states of the SLC.

A. The Needs Identification State

In accordance with the „A‟ paradigm
3
, during the devel-

opment of the Concept of Operations (CONOPS) of the sys-
tem, the conceptual system architecture was defined as two
subsystems, fastened together. The conceptual solution to the
need to fasten the two subsystems together was to use a me-
chanical method.

2 The simple function was chosen for this example to avoid getting bogged

down in the details of the subsystem and subsequent real-world problems.

Hence the use of months as time period is illustrative of the delays and is not
intended to be realistic.
3 In the „A‟ paradigm, the preliminary conceptual system architecture is de-

veloped in the Needs Identification State and the requirements are later de-
rived from the system architecture and CONOPS.

B. The Requirements State

In accordance with the „A‟ paradigm, the matching set of
specifications for the Widget system and subsystems were
developed from the CONOPS. A feasibility study on fastening
methods identified a variety of suitable low-cost Commercial-
Off-The-Shelf (COTS) fasteners at prices that were well-
below the estimated costs of developing proprietary fasteners.
The requirements for the fastening function were approved
together with the rest of the specifications at the SRR. Note
that even though the requirement limited the designer to the
use of COTS, the requirements still specified the “what”;
namely, “The system shall use a COTS fastening function to
fasten the two subsystems”

4
. The “how”, or the choice of

which type of fastener, will be developed later during the Sys-
tem Design State.

C. The System Design State

When the System Design State began, the systems engi-
neer framed the problem according to the problem formulation
template [1] as follows:

 The undesirable situation: the need to fasten two
subsystems together using a COTS fastener.

 The Feasible Conceptual Future Desirable Situation
(FCFDS): the two subsystems fastened together using a
COTS fastener.

 The problem: to decide on a specific type of COTS
fastener.

 The solution: the specific type of COTS fastener to be
determined (TBD) by the end of the state.

The activities in the System Design State take place in two
sequential sub-states as follows.

 1) The Preliminary System Design sub-state. During the

Preliminary System Design sub-state the system engineer

researched different types of COTS fastening products and

identified the following: nuts and bolts, rivets, hooks and

loops (Velcro®), and nails. The systems engineer presented a

FCFDS using each product at the PDR together with their

advantages and disadvantages.

4 The reason was stated as being the lowest cost option.

Fig. 5 The Structural perspective of the system

 1 2 3 4 5 6 7 8 9 10 11 12 13

Needs

Requirements

Design

Realization

Integration

Test

O&M
Fig. 6 Widget project: revised schedule

 2) The Detailed System Design sub-state. After some

trade-off studies in the Detailed System Design sub-state, the

selected solution accepted by consensus at the CDR was to use

a nut and a bolt to fasten the two subsystems. The system

architecture shown in Fig. 4 was split into three subsystems

as:
1. The A sub system.

2. The B subsystem.

3. The Nut and Bolt subsystem.

Perceptions of a nut and bolt from the Holistic Thinking
Perspectives (HTP) [8] include:

 The Structural perspective: a nut and a bolt constitute a
very simple system in which the function of fastening
two parts of the system together emerges from the
combination of the nut and the bolt and the interaction
between them. The A and B subsystems need to be
modified to contain a hole sized to fit the bolt (or the
bolt is sized to fit a hole). The bolt is passed through the
mounting hole in the A and B subsystems; the nut is
inserted into the bolt and tightened to a specified torque
to fasten the components together as shown in Fig. 5.

 The Generic perspective: perceptions from the Generic
perspective indicate that a nut and a bolt are generally
used as a subsystem to fasten components together.

 The Continuum perspective: perceptions from the
Continuum perspective predict that since the system is
the first of its kind, unanticipated, unknown and
unaccounted for factors at design time may emerge
when the system has been constructed and have a
negative or serendipitous effect on the system.

 The Quantitative perspective: perceptions from the
Quantitative perspective indicate the numbers of nuts
and bolts needed; the diameter of the bolt and the gauge
of the screw thread necessary to carry the anticipated
load

5
. This information becomes part of the requirement

for the nuts and bolts
6
 and is presented at the:

 CDR for the Widget system.

 SRR for the Nut and Bolt subsystem
7
.

5 The next largest standard COTS size would be used instead of creating the

exact size needed.
6 The location of the hole containing the nut and bolt and the necessary clear-
ance on the surface of the A and B systems for the nut and bolt are also part of

the specification.
7 This is to illustrate that once the System Design State of the SDP has been
completed at the CDR, each of the subsystems begin their own SDP.

D. The Realization States

The System Development Process (SDP) proceeded
through the Subsystem Construction States, the Subsystem
Test State and the System Integration State to the System Test
State without experiencing any problems with the Nut and
Bolt subsystem.

The A and B subsystems of the widget system were suffi-
ciently complex to have their own systems engineers. It was
the Widget system systems engineer‟s task to liaise with the
systems engineers responsible for the A and B subsystems
during the system realization states of the SLC to ensure that
the subsystems contained the specified matching holes, and
that the holes aligned as specified.

E. The System Test State

At this point in time, an undesirable property emerged giv-
ing rise to an undesirable situation; under some test conditions
the system came apart

8
; namely the nut and bolt no longer had

the capability to fasten the subsystems together.

An investigatory series of tests were carried out to deter-
mine under what conditions the nut and bolt came apart and it
was determined that the system was fine as long as it was not
subjected to vibration. However, once the system experienced
a vibration >N m/s

2
the nut and bolt began to separate.

F. The second Needs Identification State

At this point, the problem impacted the development
schedule and the SDP reverted to a second Needs Identifica-
tion State as shown in the revised schedule in Fig. 6. The sec-
ond iteration of the SDP began in Month 7 and the original
O&M State was delayed to Month 13.

The systems engineer and mechanical engineer performed
an analysis of the magnitude of expected vibration in each of
the operational scenarios in the CONOPS. They determined
that no anticipated mission was expected to produce vibration
>1.5N m/s

2
. This led to a new system requirement, “the system

shall NOT come apart
9
 when experiencing continuous vibra-

tion of <1.5N m/s2 for up to 30 minutes”
10

.

G. The second System Design State

At the start of the second iteration of the System Design
State the new design problem was then framed as:

8 The test conditions had simulated the scenarios in the CONOPS where the

system experienced different degrees of vibration.
9 This is a poorly worded but understandable requirement. A well-written

requirement would specify a measurable minimum value of the torque if any,

still holding the nut and bolt together after 30 minutes of vibration.
10 The 30 minute time limit came from the CONOPS.

Fig. 7 Modified system with added star washer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Needs

Requirements

Design

Realization

Integration

Test

O&M

Fig. 8 Widget project: modified schedule with delays due to the unanticipated problems

 The undesirable situation: the system
comes apart when experiencing vibration greater than
N

11
 m/s

2
.

 The FCFDS: system shall NOT come apart when
experiencing vibration less than 1.5N m/s

2
 for up to 30

minutes.

 The problem: to create the FCFDS.

 The selected solution: TBD.

The designers examined a number of alternative ways of
fixing the problem including revisiting the non-nut and bolt
solutions. The selected way to compensate for effect of vibra-
tion was to add a star washer between the nut and the subsys-
tem closest to the nut as shown in Fig. 7. The conceptual solu-
tion was prototyped, tested and shown to work and was ac-
cepted by consensus at the second iteration CDR.

H. The second iteration through the realization states

The system was constructed and tested and the solution
was validated. The star washer stopped the nut and bolt from
coming apart when experiencing vibration of <1.5N m/s

2
for

up to 30 minutes.

I. The System Test State

The SLC then reverted to the end of the initial System Test
State in Month 12 after the five-month schedule delay and cost
escalation due to the unplanned activities in the additional
states of the second iteration of realization states of the SLC.

An additional performance evaluation test was set up to
determine the performance envelope

12
 and determined that the

prototype of the system as constructed:

1. Could experience vibration <1.5N m/s
2

for up to 88
minutes before it would start to come apart.

2. Could experience vibration <2N m/s
2

for up to 73
minutes before it would start to come apart.

3. Would start to come apart immediately it experienced
vibration >3.14159N m/s

2
.

For each nut and bolt, the system now had an extra com-
ponent, the star washer. This gave rise to the next problem
which was formulated as:

 The undesirable situation: the need to place the star
washer in an existing subsystem or in a new subsystem.

11 The value N represents the minimum amount of vibration.
12 The components inside the subsystems were replaced by configuration

controlled equivalent non-functional mass blanks for the duration of these
performance tests so as not to damage the components.

 The FCFDS: the star washer is placed in an existing
subsystem or in a new subsystem.

 The problem: create the FCFDS

 The solution: TBD.

Although the prototype had demonstrated that the star
washer would meet the functional requirements, the design
still needed to be validated for the non-functional and manu-
facturing requirements. Accordingly, at this point in time the
SLC reverted back to the System Design State as shown in the
revised schedule in Fig. 8 for an additional delay of two
months.

J. The third System Design State

After due consideration of the alternatives, the systems en-
gineer determined that the preferred solution was to include
the star washer in the Nut and Bolt subsystem and rename the
subsystem as the Fastening Subsystem. The solution was ac-
cepted at the CDR and the documentation was updated. The
star washer became a part of the Fastening Subsystem as
shown in Fig. 9. Since this design decision only impacted the
documentation, there was no need for further subsystem reali-
zation states and the SLC returned to the System Test State in
Month 14 as shown in Fig. 8.

 COMMENTS V.

The simple example in the Widget project has illustrated
how:

1. The SDP was delayed by the activities in the second
and third iterations as can be seen by comparing the
original schedule in Fig. 2 with the actual schedule in
Fig. 8. Accordingly, the Widget project‟s original op-
timistic success-oriented seven-month planned
schedule turned into a 15 month project with corre-
sponding cost escalations due to unforeseen problems
in the system design.

2. First of a kind system development projects which
correspond to Shenhar and Bonen‟s Type D projects
with super high technological uncertainty [9] should
use a schedule containing two or three passes through
the waterfall rather than the single success-oriented
approach commonly used. This concept may be gen-
eralized as „the more complex the system, the more
iterations of the SDP will be needed to realize the
system‟.

3. The original single pass waterfall iterated back to the
Needs Identification State once the unfastening prob-
lem occurred. The systems engineering literature

Fig. 9 Two subsystems with renamed fastening system

System

 Fastening system

Nut Bolt star washer

Part A

 Sub A-1 Sub A-2

Sub B

generally illustrates the iteration from the Functional
perspective by drawing a line from one state to the
other in the waterfall view shown in Fig. 1. This ap-
proach:

 Tends to gloss over the accompanying schedule
delays since activities must be repeated and have
to be inserted into the project timeline.

 Is an unfortunate side effect of treating systems
engineering and project management as being in-
dependent when in fact they are interdependent.

4. The subsystem boundaries can change during the
SDP. In this instance they did not, but a new compo-
nent was added to the fastening subsystem.

5. Solutions gave rise to problems as the SDP pro-
gressed.

6. When an unanticipated undesirable emergent proper-
ty is tackled, additional components may be included
in the system to prevent or minimize the unanticipat-
ed undesirability if the unanticipated undesirable
emergent property can‟t be prevented.

7. The System Engineering Management Plan (SEMP)
should contain some slack time at the end of the Sys-
tem Test State after the tests have been completed
and before the milestone review to allow for defects
to be dealt with. Simple defects may be fixed at that
time and not require iteration back to an earlier state
of the SLC. If no defects show up, and there are no
tasks to complete, then the milestone at the end of the
state can be moved forward in time and the project
becomes ahead of schedule.

8. The degree of iteration in the SDP should a problem
arise depends on the nature of the problem.

The nut and bolt example problem replaced a complex
problem for educational purposes to focus on the effect of the
issues associated with a problem. In the real world, a problem
this simple would not cause long schedule delays and would
not require the iteration back to the earlier states of the SDP.

 LESSONS LEARNED VI.

Lessons learned included:

 System and subsystem boundaries may change during
the SDP.

 Initially unknown emergent properties become known
through experience.

 Once known, undesirable emergent properties are
usually compensated for by additional functions in a
component that may not seem to contribute to the
mission of the system.

 Do not remove any function/component without
planning some serious testing if you are not sure what
purpose he component serves.

 The more complex the system, the more iterations of
the SDP will be needed to realize the system [10].

 SUMMARY VII.

This paper fills a gap in the systems engineering and pro-
ject management education literature by providing examples
of:

1. The effect of desired and undesired emergent proper-
ties.

2. How the SLC relates to the iterative problem-solving
process.

3. The relationship between the “what‟s” and the
“how‟s” of systems engineering.

4. How subsystem boundaries can change during sys-
tem design when compensating for undesired emer-
gent properties.

5. How the solution to one problem often creates a sub-
sequent problem.

6. The effect of unanticipated problems on the schedule,
usually in the form of the need to insert unplanned
work into the schedule resulting in a delay to the pro-
ject.

7. Examples of the use of the Problem Formulation
Template [1].

8. Some of the lessons learned from the Widget case.

REFERENCES

[1] J. E. Kasser, Perceptions of Systems Engineering: Createspace, 2015.
[2] L. Carroll, Through the Looking Glass, 1872.

[3] E. Rechtin, Systems Architecting, Creating & Building Complex

Systems, Englewood Cliffs, NJ: Prentice-Hall, 1991.
[4] J. E. Kasser, and K. Palmer, “Reducing and Managing Complexity by

Changing the Boundaries of the System,” proceedings of the the

Conference on Systems Engineering Research, Hoboken NJ, 2005.
[5] J. E. Kasser, “The Hitchins-Kasser-Massie (HKM) Framework for

Systems Engineering,” proceedings of the the 17th International

Symposium of the INCOSE, San Diego, CA., 2007.
[6] W. W. Royce, “Managing the Development of Large Software Systems,”

proceedings of the IEEE WESCON, 1970.

[7] J. E. Kasser, “Getting the Right Requirements Right,” proceedings of the
the 22nd Annual International Symposium of the International Council on

Systems Engineering, Rome, Italy, 2012.

[8] J. E. Kasser, Holistic Thinking: creating innovative solutions to complex
problems, 2 ed.: Createspace Ltd., 2015.

[9] A. J. Shenhar, and Z. Bonen, “The New Taxonomy of Systems: Toward
an Adaptive Systems Engineering Framework,” IEEE Transactions on

Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 27,

no. 2, pp. 137 - 145, March 1997, 1997.
[10] J. E. Kasser, and Y.-Y. Zhao, “Simplifying Solving Complex Problems,”

proceedings of the the 11th International Conference on System of

Systems Engineering, 2016.

