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Abstract-This paper fills a gap in the systems engineering and 

project management education literature by providing examples 

of:  
1. The effect of desired and undesired emergent properties. 

2. How the System Lifecycle (SLC) relates to the iterative 
problem-solving process. 

3. The relationship between the “what‟s” and the “how‟s” of 
systems engineering. 

4. How subsystem boundaries can change during system de-
sign when compensating for undesired emergent properties. 

5. How the solution to one problem often creates a subsequent 
problem. 

6. The effect of unanticipated problems on the schedule, usu-
ally in the form of the need to insert unplanned work into 
the schedule resulting in a delay to the project. 

Keywords-emergent property; problem-solving; schedule; delay; 

boundaries; systems engineering; systems engineering education. 

 INTRODUCTION I.

This paper fills a gap in the education literature. Percep-
tions of systems engineering from different perspectives 
showed that the systems engineering literature often discusses 
the same concepts using different terminology and viewpoints 
and uses the same terminology for different concepts [1].This 
situation is similar to Humpty Dumpty telling Alice that, 
“when he uses a word it means just what he chooses it to mean 
- neither more nor less” [2] irrespective of how other people 
use the same word. Accordingly, after drawing the reader‟s 
attention to the situation, this paper begins by establishing a 
baseline for the meaning of specific terminology in Section II 
which defines the meanings of the words „system‟, „emergent 
properties‟, „the System Lifecycle (SLC)‟ and „milestone re-
views‟ as used in this paper. Section III then relates the 
„what‟s‟ and the „how‟s‟ of systems engineering to the prob-
lem-solving process and the SLC. Section IV uses the hypo-
thetical Widget system as an example to discuss: 

1. Desired and undesired emergent properties. 

2. How the solution to one problem gives rise to subse-
quent problems during the SLC and may require 
changing the boundaries of the subsystems after the 
initial architecture is approved. 

Section V contains comments on the Widget case and Sec-
tion VI summarises some of the lessons learned from the case. 

 DEFINITIONS II.

Perceptions of systems engineering from different perspec-
tives showed that the systems engineering literature often dis-
cusses the same concepts using different terminology and 
viewpoints and uses the same terminology for different con-

cepts [1]. To clarify the issues discussed in this paper, this 
section defines the following terms used in this paper: 

1. A system 

2. Emergent properties 

3. The system lifecycle 

4. Milestone reviews  

A. Definition of a system 

The example system discussed in this paper is based on the 
minimal definition of a system as, “A set of different elements 
so connected or related as to perform a unique function not 
performed by the elements alone” [3]. Accordingly, the char-
acteristics of the system include:  

1. At least two elements (subsystems). 

2. Interactions between the elements. 

3. Emergent properties that arise from the interactions 
between the elements. 

B. Emergent properties 

There seem to be three types of emergent properties [4]: 

1. Desired. 

2. Undesired.  

3. Serendipitous. 

The three types of emergent properties are split between 
known emergent properties at design time and unknown 
emergent properties at design time, as follows: 

 Known emergent properties at design time: are: 

 Desired: being the purpose of the system. 

 Undesired: based on experience and are supposed 
to be:  

 Designed out.  

 Compensated for if they cannot be designed 

out. 

 Unknown emergent properties at design time: are: 

 Undesired: functionality performed by the system 
that is undesired. 

 Serendipitous: beneficial and desired once discov-
ered, but not part of the original specifications. 

C. The System Lifecycle 

The System Lifecycle (SLC) has been defined in many 
ways. This paper uses the grouping into nine different states of 
the SLC [5] defined in generic terms as: 

A. The Needs Identification State. 
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Fig. 2 Widget project: original schedule 

 

 
Fig. 1 The waterfall view of most of the SLC 

B. The System Requirements State. 

C. The System Design State which is split into: 

 The Preliminary System Design sub-state. 

 The Detailed System Design sub-state. 

D. The Subsystem Construction State. 

E. The Subsystem Test State. 

F. The System Integration and System Test States. 

G. The Operations, Maintenance (O&M) and Upgrade 

States. 

H. The Disposal State. 

The output of each state in the SLC becomes the input to 
the subsequent state and is often shown in the waterfall [6] 
view of Fig. 1. Each state in the SLC has two exit conditions: 

1. The normal planned exit at the end of state milestone 
review which documents consensus that the system is 
ready to transition to the subsequent state.  

2. An anticipated abnormal exit anywhere in the state 
that can happen at any time in any state and necessi-
tates a return to an earlier state in the SLC due to: 

a) Any flaw other than replacing a defective item. 

b) An approved change that necessities rework.  

The second type of exit is recognized and is often depicted 
in a chaotic view of the SLC which shows every state con-
nected to every other state. 

D. Milestone reviews 

Each state in the SLC commences and terminates at a ma-
jor formal milestone. Different projects use different names 
for the formal and informal milestones, but a milestone by any 
name is still a milestone. Typical formal milestones are [1]: 

 Start of project: formally starts the project and 
commencement of the Needs Identification State. 

 Operations Concept Review (OCR): marks the 
termination of the Needs Identification State and 
commencement of the System Requirements State. 

 Systems Requirements Review (SRR): marks the 
termination of the System Requirements State and 
commencement of the Preliminary Design sub-state of 
the System Design State. 

 Preliminary Design Review (PDR): marks the 
termination of the Preliminary Design sub-state of the 
System Design State and commencement of the 
Detailed Design sub-state of the System Design State. 

 Critical Design Review (CDR): marks the termination 
of the System Design State and commencement of the 
Subsystem Construction State. 

 Test Readiness Review (TRR): marks the termination 
of the Subsystem Construction State and 
commencement of the Subsystem-Testing State. 

 Integration Readiness Review (IRR): marks the 
termination of the Subsystem-Testing State and 
commencement of the System Integration State. 

 Delivery Readiness Review (DRR): marks the 
termination of the System Integration and System Test 
States and commencement of the activities that deliver 
the system and lead to terminating the successful 
project. 

 End of project: marks the formal termination of the 
project. 

 THE “WHAT‟S” AND THE “HOW‟S” III.

Perceived from the problem-solving and enabler systems 
engineering camps [1], each state in the SLC may be consid-
ered as starting with a problem and ending with a solution. 
Accordingly the solution output of any state becomes the 
problem input to the subsequent state. For example:  

1. The matched set of specifications for the system and 
subsystems produced during the System Require-
ments State is both: 

 A solution to the problem of specifying a system 
that will meet the needs.  

 A problem to the designers/systems architects
1
 be-

cause they now have to design a system that is 
compliant to the specifications. 

2. The design or architecture produced at the end of the 
System Design State is both:  

 A solution to the problem of designing the system. 

 A problem for the Subsystem Construction State. 
This situation, shown in Fig. 3, is often referred to 
as the: 

                                                           
1 In the System Design State. 



 
Fig. 3 The waterfall view – problem-solving perspective (partial) [1] 

 
Fig. 4 Structural perspective; the three subsystems 

 

Syste
m 

Nut & 
Bolt 

Nut Bolt 

Part A  

Sub A-
1 

Sub A-
2 

Part B 

 “What’s”: which refer to what needs to be 

done, or the problem. 

 “How’s”: which refer to how it is done, or the 

solution. 

 THE WIDGET SYSTEM IV.

This section uses the Widget system as an example to dis-
cuss: 

1. Desired and undesired emergent properties. 

2. How the solution to one problem gives rise to a sub-
sequent problem during the SLC and may require 
changing the boundaries of the subsystems after the 
initial architecture is approved. 

Federated Aerospace is developing the Widget system ac-
cording to the „A‟ paradigm of systems engineering in which 
the SLC starts in the Needs Identification State [7]. The pro-
ject is the first of its kind: there are no similar systems in ex-
istence. The Widget system comprises two subsystems, Part A 
and Part B. This paper abstracts out all aspects of the Widget 
system except for the approach to mechanically fastening the 
two subsystems to each other

2
.  

The original seven-month Widget project schedule shown 
in Fig. 2 was planned as a single pass through the waterfall 
assuming there would be no serious problems during the sys-
tem development. Consider the Widget system as it passes 
through the sequential states of the SLC. 

A. The Needs Identification State  

In accordance with the „A‟ paradigm
3
, during the devel-

opment of the Concept of Operations (CONOPS) of the sys-
tem, the conceptual system architecture was defined as two 
subsystems, fastened together. The conceptual solution to the 
need to fasten the two subsystems together was to use a me-
chanical method.  

                                                           
2 The simple function was chosen for this example to avoid getting bogged 

down in the details of the subsystem and subsequent real-world problems. 

Hence the use of months as time period is illustrative of the delays and is not 
intended to be realistic. 
3 In the „A‟ paradigm, the preliminary conceptual system architecture is de-

veloped in the Needs Identification State and the requirements are later de-
rived from the system architecture and CONOPS. 

B. The Requirements State 

In accordance with the „A‟ paradigm, the matching set of 
specifications for the Widget system and subsystems were 
developed from the CONOPS. A feasibility study on fastening 
methods identified a variety of suitable low-cost Commercial- 
Off-The-Shelf (COTS) fasteners at prices that were well-
below the estimated costs of developing proprietary fasteners. 
The requirements for the fastening function were approved 
together with the rest of the specifications at the SRR. Note 
that even though the requirement limited the designer to the 
use of COTS, the requirements still specified the “what”; 
namely, “The system shall use a COTS fastening function to 
fasten the two subsystems”

4
. The “how”, or the choice of 

which type of fastener, will be developed later during the Sys-
tem Design State. 

C. The System Design State 

When the System Design State began, the systems engi-
neer framed the problem according to the problem formulation 
template [1] as follows: 

 The undesirable situation: the need to fasten two 
subsystems together using a COTS fastener.  

 The Feasible Conceptual Future Desirable Situation 
(FCFDS): the two subsystems fastened together using a 
COTS fastener. 

 The problem: to decide on a specific type of COTS 
fastener. 

 The solution: the specific type of COTS fastener to be 
determined (TBD) by the end of the state. 

The activities in the System Design State take place in two 
sequential sub-states as follows. 

 1) The Preliminary System Design sub-state. During the 

Preliminary System Design sub-state the system engineer 

researched different types of COTS fastening products and 

identified the following: nuts and bolts, rivets, hooks and 

loops (Velcro®), and nails. The systems engineer presented a 

FCFDS using each product at the PDR together with their 

advantages and disadvantages.  

                                                           
4 The reason was stated as being the lowest cost option. 



 
Fig. 5 The Structural perspective of the system 
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 2) The Detailed System Design sub-state. After some 

trade-off studies in the Detailed System Design sub-state, the 

selected solution accepted by consensus at the CDR was to use 

a nut and a bolt to fasten the two subsystems. The system 

architecture shown in Fig. 4 was split into three subsystems 

as: 
1. The A sub system. 

2. The B subsystem. 

3. The Nut and Bolt subsystem.  

Perceptions of a nut and bolt from the Holistic Thinking 
Perspectives (HTP) [8] include: 

 The Structural perspective: a nut and a bolt constitute a 
very simple system in which the function of fastening 
two parts of the system together emerges from the 
combination of the nut and the bolt and the interaction 
between them. The A and B subsystems need to be 
modified to contain a hole sized to fit the bolt (or the 
bolt is sized to fit a hole). The bolt is passed through the 
mounting hole in the A and B subsystems; the nut is 
inserted into the bolt and tightened to a specified torque 
to fasten the components together as shown in Fig. 5. 

 The Generic perspective: perceptions from the Generic 
perspective indicate that a nut and a bolt are generally 
used as a subsystem to fasten components together. 

 The Continuum perspective: perceptions from the 
Continuum perspective predict that since the system is 
the first of its kind, unanticipated, unknown and 
unaccounted for factors at design time may emerge 
when the system has been constructed and have a 
negative or serendipitous effect on the system. 

 The Quantitative perspective: perceptions from the 
Quantitative perspective indicate the numbers of nuts 
and bolts needed; the diameter of the bolt and the gauge 
of the screw thread necessary to carry the anticipated 
load

5
. This information becomes part of the requirement 

for the nuts and bolts
6
 and is presented at the: 

 CDR for the Widget system. 

 SRR for the Nut and Bolt subsystem
7
. 

                                                           
5 The next largest standard COTS size would be used instead of creating the 

exact size needed. 
6 The location of the hole containing the nut and bolt and the necessary clear-
ance on the surface of the A and B systems for the nut and bolt are also part of 

the specification. 
7 This is to illustrate that once the System Design State of the SDP has been 
completed at the CDR, each of the subsystems begin their own SDP.  

D. The Realization States 

The System Development Process (SDP) proceeded 
through the Subsystem Construction States, the Subsystem 
Test State and the System Integration State to the System Test 
State without experiencing any problems with the Nut and 
Bolt subsystem.  

The A and B subsystems of the widget system were suffi-
ciently complex to have their own systems engineers. It was 
the Widget system systems engineer‟s task to liaise with the 
systems engineers responsible for the A and B subsystems 
during the system realization states of the SLC to ensure that 
the subsystems contained the specified matching holes, and 
that the holes aligned as specified.  

E. The System Test State 

At this point in time, an undesirable property emerged giv-
ing rise to an undesirable situation; under some test conditions 
the system came apart

8
; namely the nut and bolt no longer had 

the capability to fasten the subsystems together. 

An investigatory series of tests were carried out to deter-
mine under what conditions the nut and bolt came apart and it 
was determined that the system was fine as long as it was not 
subjected to vibration. However, once the system experienced 
a vibration >N m/s

2 
the nut and bolt began to separate.  

F. The second Needs Identification State 

At this point, the problem impacted the development 
schedule and the SDP reverted to a second Needs Identifica-
tion State as shown in the revised schedule in Fig. 6. The sec-
ond iteration of the SDP began in Month 7 and the original 
O&M State was delayed to Month 13.  

The systems engineer and mechanical engineer performed 
an analysis of the magnitude of expected vibration in each of 
the operational scenarios in the CONOPS. They determined 
that no anticipated mission was expected to produce vibration 
>1.5N m/s

2
. This led to a new system requirement, “the system 

shall NOT come apart
9
 when experiencing continuous vibra-

tion of <1.5N m/s2 for up to 30 minutes”
10

.  

G. The second System Design State 

At the start of the second iteration of the System Design 
State the new design problem was then framed as: 

                                                           
8 The test conditions had simulated the scenarios in the CONOPS where the 

system experienced different degrees of vibration. 
9 This is a poorly worded but understandable requirement. A well-written 

requirement would specify a measurable minimum value of the torque if any, 

still holding the nut and bolt together after 30 minutes of vibration. 
10 The 30 minute time limit came from the CONOPS. 



 
Fig. 7 Modified system with added star washer 
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Fig. 8 Widget project: modified schedule with delays due to the unanticipated problems 

 The undesirable situation: the system 
comes apart when experiencing vibration greater than 
N

11
 m/s

2
. 

 The FCFDS: system shall NOT come apart when 
experiencing vibration less than 1.5N m/s

2
 for up to 30 

minutes.  

 The problem: to create the FCFDS. 

 The selected solution: TBD. 

The designers examined a number of alternative ways of 
fixing the problem including revisiting the non-nut and bolt 
solutions. The selected way to compensate for effect of vibra-
tion was to add a star washer between the nut and the subsys-
tem closest to the nut as shown in Fig. 7. The conceptual solu-
tion was prototyped, tested and shown to work and was ac-
cepted by consensus at the second iteration CDR.  

H. The second iteration through the realization states 

The system was constructed and tested and the solution 
was validated. The star washer stopped the nut and bolt from 
coming apart when experiencing vibration of <1.5N m/s

2 
for 

up to 30 minutes.  

I. The System Test State 

The SLC then reverted to the end of the initial System Test 
State in Month 12 after the five-month schedule delay and cost 
escalation due to the unplanned activities in the additional 
states of the second iteration of realization states of the SLC. 

An additional performance evaluation test was set up to 
determine the performance envelope

12
 and determined that the 

prototype of the system as constructed: 

1. Could experience vibration <1.5N m/s
2 

for up to 88 
minutes before it would start to come apart. 

2. Could experience vibration <2N m/s
2 

for up to 73 
minutes before it would start to come apart. 

3. Would start to come apart immediately it experienced 
vibration >3.14159N m/s

2
.  

For each nut and bolt, the system now had an extra com-
ponent, the star washer. This gave rise to the next problem 
which was formulated as: 

 The undesirable situation: the need to place the star 
washer in an existing subsystem or in a new subsystem. 

                                                           
11 The value N represents the minimum amount of vibration. 
12 The components inside the subsystems were replaced by configuration 

controlled equivalent non-functional mass blanks for the duration of these 
performance tests so as not to damage the components. 

 The FCFDS: the star washer is placed in an existing 
subsystem or in a new subsystem. 

 The problem: create the FCFDS 

 The solution: TBD. 

Although the prototype had demonstrated that the star 
washer would meet the functional requirements, the design 
still needed to be validated for the non-functional and manu-
facturing requirements. Accordingly, at this point in time the 
SLC reverted back to the System Design State as shown in the 
revised schedule in Fig. 8 for an additional delay of two 
months. 

J. The third System Design State 

After due consideration of the alternatives, the systems en-
gineer determined that the preferred solution was to include 
the star washer in the Nut and Bolt subsystem and rename the 
subsystem as the Fastening Subsystem. The solution was ac-
cepted at the CDR and the documentation was updated. The 
star washer became a part of the Fastening Subsystem as 
shown in Fig. 9. Since this design decision only impacted the 
documentation, there was no need for further subsystem reali-
zation states and the SLC returned to the System Test State in 
Month 14 as shown in Fig. 8.  

 COMMENTS V.

The simple example in the Widget project has illustrated 
how: 

1. The SDP was delayed by the activities in the second 
and third iterations as can be seen by comparing the 
original schedule in Fig. 2 with the actual schedule in 
Fig. 8. Accordingly, the Widget project‟s original op-
timistic success-oriented seven-month planned 
schedule turned into a 15 month project with corre-
sponding cost escalations due to unforeseen problems 
in the system design.  

2. First of a kind system development projects which 
correspond to Shenhar and Bonen‟s Type D projects 
with super high technological uncertainty [9] should 
use a schedule containing two or three passes through 
the waterfall rather than the single success-oriented 
approach commonly used. This concept may be gen-
eralized as „the more complex the system, the more 
iterations of the SDP will be needed to realize the 
system‟. 

3. The original single pass waterfall iterated back to the 
Needs Identification State once the unfastening prob-
lem occurred. The systems engineering literature 



 
Fig. 9 Two subsystems with renamed fastening system 
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generally illustrates the iteration from the Functional 
perspective by drawing a line from one state to the 
other in the waterfall view shown in  Fig. 1. This ap-
proach: 

 Tends to gloss over the accompanying schedule 
delays since activities must be repeated and have 
to be inserted into the project timeline.  

 Is an unfortunate side effect of treating systems 
engineering and project management as being in-
dependent when in fact they are interdependent. 

4. The subsystem boundaries can change during the 
SDP. In this instance they did not, but a new compo-
nent was added to the fastening subsystem. 

5. Solutions gave rise to problems as the SDP pro-
gressed. 

6. When an unanticipated undesirable emergent proper-
ty is tackled, additional components may be included 
in the system to prevent or minimize the unanticipat-
ed undesirability if the unanticipated undesirable 
emergent property can‟t be prevented.  

7. The System Engineering Management Plan (SEMP) 
should contain some slack time at the end of the Sys-
tem Test State after the tests have been completed 
and before the milestone review to allow for defects 
to be dealt with. Simple defects may be fixed at that 
time and not require iteration back to an earlier state 
of the SLC. If no defects show up, and there are no 
tasks to complete, then the milestone at the end of the 
state can be moved forward in time and the project 
becomes ahead of schedule. 

8. The degree of iteration in the SDP should a problem 
arise depends on the nature of the problem. 

The nut and bolt example problem replaced a complex 
problem for educational purposes to focus on the effect of the 
issues associated with a problem. In the real world, a problem 
this simple would not cause long schedule delays and would 
not require the iteration back to the earlier states of the SDP.  

 LESSONS LEARNED VI.

Lessons learned included: 

 System and subsystem boundaries may change during 
the SDP. 

 Initially unknown emergent properties become known 
through experience.  

 Once known, undesirable emergent properties are 
usually compensated for by additional functions in a 
component that may not seem to contribute to the 
mission of the system.  

 Do not remove any function/component without 
planning some serious testing if you are not sure what 
purpose he component serves. 

 The more complex the system, the more iterations of 
the SDP will be needed to realize the system [10]. 

 SUMMARY VII.

This paper fills a gap in the systems engineering and pro-
ject management education literature by providing examples 
of:  

1. The effect of desired and undesired emergent proper-
ties. 

2. How the SLC relates to the iterative problem-solving 
process. 

3. The relationship between the “what‟s” and the 
“how‟s” of systems engineering. 

4. How subsystem boundaries can change during sys-
tem design when compensating for undesired emer-
gent properties. 

5. How the solution to one problem often creates a sub-
sequent problem. 

6. The effect of unanticipated problems on the schedule, 
usually in the form of the need to insert unplanned 
work into the schedule resulting in a delay to the pro-
ject. 

7. Examples of the use of the Problem Formulation 
Template [1]. 

8. Some of the lessons learned from the Widget case. 
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